

EUROPEAN UNION

REGIONE AUTÒNOMA DE SARDIGNA REGIONE AUTONOMA DELLA SARDEGNA

Innovation & Patents (IPMED)

Prepared By

Amin O. Shammout

Osama S. Alsalaheen

26/ Jun / 2023

This work does not aim to provide a full complete study, but rather highlighting main indicators some are presented by graphs such as infographic in order to be considered in future works in depth analyses.

Objectives:

1–Comparing Patents and Innovation **Index in Greece**, **Italy**, **Jordan and Tunisia** during the Period (2012–2022).

2-Highlighting improvement in **Innovation Index**, Focusing on **Patents** in the above countries (IPMED).

3- To come up with selected indicators (Patents) such as patent grants by technology in order to compare between the IPMED counters.

Methodology and Data Source:

Descriptive Analysis, Data Sources are from Official Sites, Local and Regional.

Expected Outcome: Constructing Indicators in order to provide conclusion's targeting

Researchers, Policies & Decision Makers.

Selected Economies Indicators

GDP per Capita – IPMED

Figure No. 1 indicates that the GDP per Capita of Italy, Greece respectively is more than quadrable that of Jordan and Tunisia during the period (2019–2021).

Source: https://data.worldbank.org/

Industrial Contribution (Including Construction) of the GDP

Figure No. 2 shows that manufacturing and construction industries percentage contribution to the GDP in Greece and Italy, respectively is less than Jordan and Tunisia during the period (2011–2021).

Figure No. 2 :

Source: World Bank / https://data.worldbank.org/

Global Innovation Index (GII)

Conceptual Framework of Global Innovation Index (GII)

Global Innovation Report 2011, (see Figure 3) had been made to explain the Global Innovation Index (GII) conceptual framework which consists of two sub-indices, Input Sub Index and Output Sub-Index, each of the separate sub- index built around pillars. Five inputs on one side hand pillars capture elements of component that enable innovative activities as follows: (1) Institutions, (2) Human capital and research, (3) Infrastructure, (4) Market sophistication (5) Business sophistication. Two elements' components pillar on the other side hand capture innovation outputs:(1) Scientific outputs (2) Creative outputs. Moreover, each pillar is consisted into sub-pillars and each sub-pillar is composed of individual indicators. "Sub-pillar scores are calculated as the weighted average of individual indicators; pillar scores are calculated as the simple average of the sub-pillar scores". The pillar on the top is the Innovation Efficiency Index which is the ratio of innovation outputs to innovation inputs (Shammout, a., et al,2021).

Innovation Index (GII) – IPMED

Figure No. 4 Indicates that (GII) score of Italy was the highest among the four countries during the period (2013–2022), followed by Greece in a steady behavior. Jordan & Tunisia however followed a rather flections decreasing trends below both Italy & Greek during the same period above.

Source: https://www.globalinnovationindex.org/analysis-indicator

Innovation Sub-Index (Inputs)

Figure No. 5 Indicate that analysis of Innovation Sub–Index (Inputs) resulted in that Italy remained stable in trend, while Greece, Jordan, Tunisia showed slightly fluctuations in a decreasing manner during the period (2013–2022).

Source: https://www.globalinnovationindex.org/analysis-indicator

Innovation Sub-Index (Outputs)

Figure No. 6 indicate that Innovation Sub–Index (Outputs) of Italy, Greece respectively is more than Tunisia and Jordan respectively during the period (2015–2019), while Jordan exceeded Tunisia in the 2022.

Source: https://www.globalinnovationindex.org/analysis-indicator

Innovation Efficiency Ratio – IPMED

The Innovation efficiency ratio is calculated by dividing the (Innovation Output sub-index) by the (Innovation Inputs sub-index).

Figure No. 7 indicates that the Innovation Efficiency Ratio of Italy, Tunisia respectively is more than Greece and Jordan respectively during the period (2020–2022).

Figure No. 7:

Source: <u>https://www.globalinnovationindex.org/analysis-indicator</u>

Patents - IPMED

Total Patent Applications (Direct and PCT¹ National Phase Entries)

Table No.1 presented the total patent applications for the four countries during the period 2012–2021, we can see that Italy is increasing during this period, and Greece is increasing as well even though some slightly fluctuating, while Jordan and Tunisia are obviously fluctuating manner in the same period above.

Year	Greece	Italy	Jordan	Tunisia
2012	1107	28696	120	191
2013	1083	28970	213	218
2014	1254	29360	83	176
2015	1154	30306	184	218
2016	1234	31252	144	270
2017	1233	31393	88	188
2018	1137	32289	51	201
2019	1164	32028	49	N/A
2020	1129	32551	75	N/A

Table No.1:

¹ Patent Cooperation Treaty

	IN	NOVATION &	PATENT (IPME	ED)			
2021 1387 34206 53 N/A							
Source: https://www3.wipo.int/ipstats/keyindex.htm							

Grant for Direct Applications – IPMED

Table No.2 presented the Grant for Direct Applications for the four countries during the period 2012–2021, we can see that Italy is increasing during this period even though some slightly fluctuating, we can see also that Greece slightly steady, while Jordan and Tunisia are obviously fluctuating manner in the same period above.

It is worth to mention that Tunisia data are not available to many years as is shown in Table No.1 and No.2.

Year	Greece	Italy	Jordan	Tunisia
2012	390	9643	14	143
2013	367	12077	18	104
2014	399	11658	63	n/a
2015	339	11103	33	n/a
2016	362	11158	9	1
2017	377	10245	27	n/a
2018	347	12441	48	n/a
2019	403	14426	26	n/a

Table No.2:

2020	391	14615	24	n/a
2021	391	12209	19	n/a

Source: https://www3.wipo.int/ipstats/IpsStatsResultvalue

Resident Patent Application Percentage

Figure No. 8 Indicate that resident percentage to the total patent application

of Italy is slightly increasing, However Greece and Jordan are fluctuation during the period (2012-

2022), While Tunisia had improved by increasing during the period (2013-2022).

Figure No.8 :

Source: Calculated from Actual Data, https://www3.wipo.int/ipstats/keyindex.htm

Resident Applications per-million population (by origin)

Figure No.9 Indicate that the gap (Resident applications per million population) between Italy and other IPMED countries is increasing during the period 2012–2021, even though that Greece is less gap.

Figure No. 9

Patent grants by technology

Table No.3

Sum of 2	Column Labels			
Row Labels	Greece*	Italy*	Jordan*	Tunisia*
1 - Electrical machinery, apparatus, energy	13.3	709.3	1.5	
10 - Measurement	8.0	631.0	2.0	

11 - Analysis of biological materials	1.5	69.0		
12 - Control	8.7	195.3	2.0	
13 - Medical technology	31.0	766.7	1.7	1.0
14 - Organic fine chemistry	15.0	353.3		
15 - Biotechnology	15.3	210.7	1.0	
16 - Pharmaceuticals	67.0	664.0	2.0	2.5
17 - Macromolecular chemistry, polymers	3.3	374.7		
18 - Food chemistry	26.3	196.0	1.0	1.0
19 - Basic materials chemistry	9.0	204.7	2.7	
2 - Audio-visual technology	4.7	131.7		1.0
20 - Materials, metallurgy	3.7	198.3	1.0	
21 - Surface technology, coating	23.0	218.0	1.0	
22 - Micro-structural and nano-technology		36.3		
23 - Chemical engineering	10.7	436.0	3.7	1.0
24 - Environmental technology	12.7	172.3	1.0	
25 - Handling	24.3	1084.3	1.5	1.0
26 - Machine tools	107.3	576.3	1.5	
27 - Engines, pumps, turbines	15.0	631.7	2.3	
28 - Textile and paper machines	7.3	415.3		
29 - Other special machines	41.3	890.0	1.0	
3 - Telecommunications	7.0	101.3		
30 - Thermal processes and apparatus	9.0	443.7	1.0	
31 - Mechanical elements	10.0	787.3		
32 - Transport	17.7	1189.3	2.0	1.0
33 - Furniture, games	14.3	644.0		
34 - Other consumer goods	13.3	439.3	1.0	
35 - Civil engineering	37.7	791.7	2.0	
4 - Digital communication	4.3	191.0		1.0
5 - Basic communication processes	1.3	72.3		
6 - Computer technology	12.0	233.7		1.5
7 - IT methods for management	4.0	25.0		1.0
8 - Semiconductors	3.0	123.3		
9 - Optics	2.0	169.7		
Unknown		3.0		
Grand Total	584	14380	33	12

*Available years average (2019,2021,2022)

Conclusions

- Innovation Index (GII) score of Italy was the highest among the four countries during the period (2013–2022), followed by Greece in a steady behavior. Jordan & Tunisia however followed a rather flections trends below both Italy & Greek during the same period above.
- Innovation Sub–Index (Inputs) resulted in that Italy remained stable in trend, while Greece, Jordan, Tunisia showed slightly fluctuations in a decreasing manner during the period (2017– 2022).
- 3. Manufacturing percentage contribution including Construction of the GDP in (Greece and Italy), respectively are less than percentage contribution (Jordan and Tunisia) during the period (2011-2021) ; Therefore this indicate that there is an opportunities for nonmanufacturing countries to improve technology in other sectors in addition of Manufacturing.
- Resident percentage to the total patent application of Italy is slightly increasing, while Greece, and Jordan are fluctuation during the period (2012–2022). While Tunisia had improved by increasing during the period (2013–2022).
- 5. The gap (Resident applications per million population) between Italy and other IPMED countries is increasing during the period 2012–2021, while Greece gap is less.

References:

Cornell University, INSEAD, & WIPO; The Global Innovation Index;

https://www.globalinnovationindex.org/analysis-indicator https://www.wipo.int/portal/en/index.html

https://www3.wipo.int/ipstats/keyindex.htm

Shammout, A., Al-Satel. R., and Al-Zu'bi, B (2021).Exploring Analysis of the Global Innovation Index Considering Manufacturing Industry in Jordan (2011-2020). Journal of al-Quds Open University for Administrative & Economic Research and Studies Vol-No (16).

World Bank – Open Data /: https://data.worldbank.org/

World Intellectual Property Indicators 2022

"This publication has been produced with the financial assistance of the European Union under the ENI CBC Mediterranean Sea Basin Programme. The contents of this document are the sole responsibility of (JEDCO) and can under no circumstances be regarded as reflecting the position of the European Union or the Programme management structures"